C++98 lexer

This is an example of a C++98 lexer. It tries to be conforming to the C++98 standard (except for a couple of hacks that simulate the preprocessor). All nontrivial lexemes (integers, floating-point constants, strings, and character literals) are parsed, not only recognized: numeric literals are converted to numbers and strings are unescaped. Some additional checks described in the standard (e.g., overflows in integer literals) are also done.

[cxx98.re]

// re2c $INPUT -o $OUTPUT -i
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>

/*!max:re2c*/
static const size_t SIZE = 64 * 1024;

struct input_t {
    unsigned char buf[SIZE + YYMAXFILL];
    unsigned char *lim;
    unsigned char *cur;
    unsigned char *mar;
    unsigned char *tok;
    bool eof;

    FILE *const file;

    input_t(FILE *f)
        : buf()
        , lim(buf + SIZE)
        , cur(lim)
        , mar(lim)
        , tok(lim)
        , eof(false)
        , file(f)
    {}
    bool fill(size_t need)
    {
        if (eof) {
            return false;
        }
        const size_t free = tok - buf;
        if (free < need) {
            return false;
        }
        memmove(buf, tok, lim - tok);
        lim -= free;
        cur -= free;
        mar -= free;
        tok -= free;
        lim += fread(lim, 1, free, file);
        if (lim < buf + SIZE) {
            eof = true;
            memset(lim, 0, YYMAXFILL);
            lim += YYMAXFILL;
        }
        return true;
    }
};

/*!re2c re2c:define:YYCTYPE = "unsigned char"; */

template<int base>
static bool adddgt(unsigned long &u, unsigned long d)
{
    if (u > (ULONG_MAX - d) / base) {
        return false;
    }
    u = u * base + d;
    return true;
}

static bool lex_oct(const unsigned char *s, const unsigned char *e, unsigned long &u)
{
    for (u = 0, ++s; s < e; ++s) {
        if (!adddgt<8>(u, *s - 0x30u)) {
            return false;
        }
    }
    return true;
}

static bool lex_dec(const unsigned char *s, const unsigned char *e, unsigned long &u)
{
    for (u = 0; s < e; ++s) {
        if (!adddgt<10>(u, *s - 0x30u)) {
            return false;
        }
    }
    return true;
}

static bool lex_hex(const unsigned char *s, const unsigned char *e, unsigned long &u)
{
    for (u = 0, s += 2; s < e;) {
    /*!re2c
        re2c:yyfill:enable = 0;
        re2c:define:YYCURSOR = s;
        *     { if (!adddgt<16>(u, s[-1] - 0x30u))      return false; continue; }
        [a-f] { if (!adddgt<16>(u, s[-1] - 0x61u + 10)) return false; continue; }
        [A-F] { if (!adddgt<16>(u, s[-1] - 0x41u + 10)) return false; continue; }
    */
    }
    return true;
}

static bool lex_str(input_t &in, unsigned char q)
{
    fprintf(stderr, "%c", q);
    for (unsigned long u = q;; fprintf(stderr, "\\x%lx", u)) {
        in.tok = in.cur;
        /*!re2c
            re2c:yyfill:enable = 1;
            re2c:define:YYCURSOR = in.cur;
            re2c:define:YYMARKER = in.mar;
            re2c:define:YYLIMIT = in.lim;
            re2c:define:YYFILL = "if (!in.fill(@@)) return false;";
            re2c:define:YYFILL:naked = 1;
            *                    { return false; }
            [^\n\\]              { u = in.tok[0]; if (u == q) break; continue; }
            "\\a"                { u = '\a'; continue; }
            "\\b"                { u = '\b'; continue; }
            "\\f"                { u = '\f'; continue; }
            "\\n"                { u = '\n'; continue; }
            "\\r"                { u = '\r'; continue; }
            "\\t"                { u = '\t'; continue; }
            "\\v"                { u = '\v'; continue; }
            "\\\\"               { u = '\\'; continue; }
            "\\'"                { u = '\''; continue; }
            "\\\""               { u = '"';  continue; }
            "\\?"                { u = '?';  continue; }
            "\\" [0-7]{1,3}      { lex_oct(in.tok, in.cur, u); continue; }
            "\\u" [0-9a-fA-F]{4} { lex_hex(in.tok, in.cur, u); continue; }
            "\\U" [0-9a-fA-F]{8} { lex_hex(in.tok, in.cur, u); continue; }
            "\\x" [0-9a-fA-F]+   { if (!lex_hex(in.tok, in.cur, u)) return false; continue; }
        */
    }
    fprintf(stderr, "%c", q);
    return true;
}

static bool lex_flt(const unsigned char *s)
{
    double d = 0;
    double x = 1;
    int e = 0;
    /*!re2c
        re2c:yyfill:enable = 0;
        re2c:define:YYCURSOR = s;
    */
mant_int:
    /*!re2c
        "."   { goto mant_frac; }
        [eE]  { goto exp_sign; }
        *     { d = (d * 10) + (s[-1] - '0'); goto mant_int; }
    */
mant_frac:
    /*!re2c
        ""    { goto sfx; }
        [eE]  { goto exp_sign; }
        [0-9] { d += (x /= 10) * (s[-1] - '0'); goto mant_frac; }
    */
exp_sign:
    /*!re2c
        "+"?  { x = 1e+1; goto exp; }
        "-"   { x = 1e-1; goto exp; }
    */
exp:
    /*!re2c
        ""    { for (; e > 0; --e) d *= x;    goto sfx; }
        [0-9] { e = (e * 10) + (s[-1] - '0'); goto exp; }
    */
sfx:
    /*!re2c
        *     { goto end; }
        [fF]  { if (d > FLT_MAX) return false; goto end; }
    */
end:
    fprintf(stderr, "%g", d);
    return true;
}

static bool lex(input_t &in)
{
    unsigned long u;
    for (;;) {
        in.tok = in.cur;
        /*!re2c
            re2c:yyfill:enable = 1;
            re2c:define:YYCURSOR = in.cur;
            re2c:define:YYMARKER = in.mar;
            re2c:define:YYLIMIT = in.lim;
            re2c:define:YYFILL = "if (!in.fill(@@)) return false;";
            re2c:define:YYFILL:naked = 1;

            end = "\x00";

            *   { return false; }
            end {
                fprintf(stderr, "\n");
                return in.lim - in.tok == YYMAXFILL;
            }

            // macros
            macro = ("#" | "%:") ([^\n] | "\\\n")* "\n";
            macro { continue; }

            // whitespaces
            mcm = "/*" ([^*] | ("*" [^/]))* "*""/";
            scm = "//" [^\n]* "\n";
            wsp = ([ \t\v\n\r] | scm | mcm)+;
            wsp { fprintf(stderr, " "); continue; }

            // character and string literals
            "L"? ['"] { if (!lex_str(in, in.cur[-1])) return false; continue; }
            "L"? "''" { return false; }

            // integer literals
            oct = "0" [0-7]*;
            dec = [1-9][0-9]*;
            hex = '0x' [0-9a-fA-F]+;
            oct { if (!lex_oct(in.tok, in.cur, u)) return false; goto sfx; }
            dec { if (!lex_dec(in.tok, in.cur, u)) return false; goto sfx; }
            hex { if (!lex_hex(in.tok, in.cur, u)) return false; goto sfx; }

            // floating literals
            frc = [0-9]* "." [0-9]+ | [0-9]+ ".";
            exp = 'e' [+-]? [0-9]+;
            flt = (frc exp? | [0-9]+ exp) [fFlL]?;
            flt { if (lex_flt(in.tok)) continue; return false; }

            // boolean literals
            "false" { fprintf(stderr, "false"); continue; }
            "true"  { fprintf(stderr, "true");  continue; }

            // keywords
            "asm"              { fprintf(stderr, "ASM");              continue; }
            "auto"             { fprintf(stderr, "AUTO");             continue; }
            "bool"             { fprintf(stderr, "BOOL");             continue; }
            "break"            { fprintf(stderr, "BREAK");            continue; }
            "case"             { fprintf(stderr, "CASE");             continue; }
            "catch"            { fprintf(stderr, "CATCH");            continue; }
            "char"             { fprintf(stderr, "CHAR");             continue; }
            "class"            { fprintf(stderr, "CLASS");            continue; }
            "const"            { fprintf(stderr, "CONST");            continue; }
            "const_cast"       { fprintf(stderr, "CONST_CAST");       continue; }
            "continue"         { fprintf(stderr, "CONTINUE");         continue; }
            "default"          { fprintf(stderr, "DEFAULT");          continue; }
            "do"               { fprintf(stderr, "DO");               continue; }
            "double"           { fprintf(stderr, "DOUBLE");           continue; }
            "dynamic_cast"     { fprintf(stderr, "DYNAMIC_CAST");     continue; }
            "else"             { fprintf(stderr, "ELSE");             continue; }
            "enum"             { fprintf(stderr, "ENUM");             continue; }
            "explicit"         { fprintf(stderr, "EXPLICIT");         continue; }
            "export"           { fprintf(stderr, "EXPORT");           continue; }
            "extern"           { fprintf(stderr, "EXTERN");           continue; }
            "float"            { fprintf(stderr, "FLOAT");            continue; }
            "for"              { fprintf(stderr, "FOR");              continue; }
            "friend"           { fprintf(stderr, "FRIEND");           continue; }
            "goto"             { fprintf(stderr, "GOTO");             continue; }
            "if"               { fprintf(stderr, "IF");               continue; }
            "inline"           { fprintf(stderr, "INLINE");           continue; }
            "int"              { fprintf(stderr, "INT");              continue; }
            "long"             { fprintf(stderr, "LONG");             continue; }
            "mutable"          { fprintf(stderr, "MUTABLE");          continue; }
            "namespace"        { fprintf(stderr, "NAMESPACE");        continue; }
            "operator"         { fprintf(stderr, "OPERATOR");         continue; }
            "private"          { fprintf(stderr, "PRIVATE");          continue; }
            "protected"        { fprintf(stderr, "PROTECTED");        continue; }
            "public"           { fprintf(stderr, "PUBLIC");           continue; }
            "register"         { fprintf(stderr, "REGISTER");         continue; }
            "reinterpret_cast" { fprintf(stderr, "REINTERPRET_CAST"); continue; }
            "return"           { fprintf(stderr, "RETURN");           continue; }
            "short"            { fprintf(stderr, "SHORT");            continue; }
            "signed"           { fprintf(stderr, "SIGNED");           continue; }
            "sizeof"           { fprintf(stderr, "SIZEOF");           continue; }
            "static"           { fprintf(stderr, "STATIC");           continue; }
            "static_cast"      { fprintf(stderr, "STATIC_CAST");      continue; }
            "struct"           { fprintf(stderr, "STRUCT");           continue; }
            "switch"           { fprintf(stderr, "SWITCH");           continue; }
            "template"         { fprintf(stderr, "TEMPLATE");         continue; }
            "this"             { fprintf(stderr, "THIS");             continue; }
            "throw"            { fprintf(stderr, "THROW");            continue; }
            "try"              { fprintf(stderr, "TRY");              continue; }
            "typedef"          { fprintf(stderr, "TYPEDEF");          continue; }
            "typeid"           { fprintf(stderr, "TYPEID");           continue; }
            "typename"         { fprintf(stderr, "TYPENAME");         continue; }
            "union"            { fprintf(stderr, "UNION");            continue; }
            "unsigned"         { fprintf(stderr, "UNSIGNED");         continue; }
            "using"            { fprintf(stderr, "USING");            continue; }
            "virtual"          { fprintf(stderr, "VIRTUAL");          continue; }
            "void"             { fprintf(stderr, "VOID");             continue; }
            "volatile"         { fprintf(stderr, "VOLATILE");         continue; }
            "wchar_t"          { fprintf(stderr, "WCHAR_T");          continue; }
            "while"            { fprintf(stderr, "WHILE");            continue; }

            // operators and punctuation (including preprocessor)
            ("{" | "<%")      { fprintf(stderr, "{");      continue; }
            ("}" | "%>")      { fprintf(stderr, "}");      continue; }
            ("[" | "<:")      { fprintf(stderr, "[");      continue; }
            ("]" | ":>")      { fprintf(stderr, "]");      continue; }
            "("               { fprintf(stderr, "(");      continue; }
            ")"               { fprintf(stderr, ")");      continue; }
            ";"               { fprintf(stderr, ";");      continue; }
            ":"               { fprintf(stderr, ":");      continue; }
            "..."             { fprintf(stderr, "...");    continue; }
            "new"             { fprintf(stderr, "new");    continue; }
            "delete"          { fprintf(stderr, "delete"); continue; }
            "?"               { fprintf(stderr, "?");      continue; }
            "::"              { fprintf(stderr, "::");     continue; }
            "."               { fprintf(stderr, ".");      continue; }
            ".*"              { fprintf(stderr, ".");      continue; }
            "+"               { fprintf(stderr, "+");      continue; }
            "-"               { fprintf(stderr, "-");      continue; }
            "*"               { fprintf(stderr, "*");      continue; }
            "/"               { fprintf(stderr, "/");      continue; }
            "%"               { fprintf(stderr, "%%");     continue; }
            ("^" | "xor")     { fprintf(stderr, "^");      continue; }
            ("&" | "bitand")  { fprintf(stderr, "&");      continue; }
            ("|" | "bitor")   { fprintf(stderr, "|");      continue; }
            ("~" | "compl")   { fprintf(stderr, "~");      continue; }
            ("!" | "not")     { fprintf(stderr, "!");      continue; }
            "="               { fprintf(stderr, "=");      continue; }
            "<"               { fprintf(stderr, "<");      continue; }
            ">"               { fprintf(stderr, ">");      continue; }
            "+="              { fprintf(stderr, "+=");     continue; }
            "-="              { fprintf(stderr, "-=");     continue; }
            "*="              { fprintf(stderr, "*=");     continue; }
            "/="              { fprintf(stderr, "/=");     continue; }
            "%="              { fprintf(stderr, "%%=");    continue; }
            ("^=" | "xor_eq") { fprintf(stderr, "^=");     continue; }
            ("&=" | "and_eq") { fprintf(stderr, "&=");     continue; }
            ("|=" | "or_eq")  { fprintf(stderr, "|=");     continue; }
            "<<"              { fprintf(stderr, "<<");     continue; }
            ">>"              { fprintf(stderr, ">>");     continue; }
            ">>="             { fprintf(stderr, ">>=");    continue; }
            "<<="             { fprintf(stderr, "<<=");    continue; }
            "=="              { fprintf(stderr, "==");     continue; }
            ("!=" | "not_eq") { fprintf(stderr, "!=");     continue; }
            "<="              { fprintf(stderr, "<=");     continue; }
            ">="              { fprintf(stderr, ">=");     continue; }
            ("&&" | "and")    { fprintf(stderr, "&&");     continue; }
            ("||" | "or")     { fprintf(stderr, "||");     continue; }
            "++"              { fprintf(stderr, "++");     continue; }
            "--"              { fprintf(stderr, "--");     continue; }
            ","               { fprintf(stderr, ",");      continue; }
            "->*"             { fprintf(stderr, "->*");    continue; }
            "->"              { fprintf(stderr, "->");     continue; }

            // identifiers
            id = [a-zA-Z_][a-zA-Z_0-9]*;
            id { fprintf(stderr, "%.*s", (int)(in.cur - in.tok), in.tok); continue; }
        */
sfx:
        /*!re2c
            ""          { if (u > INT_MAX)  return false; fprintf(stderr, "%d",  static_cast<int>(u));      continue; }
            'u'         { if (u > UINT_MAX) return false; fprintf(stderr, "%u",  static_cast<unsigned>(u)); continue; }
            'l'         { if (u > LONG_MAX) return false; fprintf(stderr, "%ld", static_cast<long>(u));     continue; }
            'ul' | 'lu' { fprintf(stderr, "%lu", u); continue; }
        */
    }
}

int main()
{
    const char *fname = "example.cpp";
    FILE *f;

    // prepare input file
    f = fopen(fname, "w");
    fprintf(f,
        "#include<stdio.h>\n"
        "\n"
        "int main()\n"
        "{\n"
        "    int n;\n"
        "    printf(\"Enter the number:\\n\");\n"
        "    scanf(\"%%d\", &n);\n"
        "\n"
        "    int f = 1;\n"
        "    for(int i = 1; i <= n; ++i) {\n"
        "        f *= i;\n"
        "    }\n"
        "\n"
        "    printf(\"Factorial of %%d is %%d\\n\", n, f);\n"
        "    return 0;\n"
        "}\n"
        "\n");
    fclose(f);

    f = fopen(fname, "rb");
    input_t in(f);
    assert(lex(in));
    fclose(f);

    // cleanup
    remove(fname);
    return 0;
}

Compile as re2c -o cxx98.cc cxx98.re. Notes:

  • The main lexer is used to lex all trivial lexemes (macros, whitespace, boolean literals, keywords, operators, punctuators, and identifiers), recognize numeric literals (which are further parsed by a bunch of auxiliary lexers), and recognize the start of a string and character literals (which are further recognized and parsed by an auxiliary lexer). Numeric literals are thus lexed twice: this approach may be deemed inefficient, but it takes much more effort to validate and parse them in one go. Besides, a real-world lexer would rather recognize ill-formed lexemes (e.g., overflown integer literals), report them, and resume lexing.

  • We don’t use re2c in cases where a hand-written parser looks simpler: when parsing octal and decimal literals (though a re2c-based parser would do exactly the same, without the slightest overhead). However, hexadecimal literals still require some lexing, which looks better with re2c. Again, it’s only a matter of taste: a re2c-based implementation adds no overhead. Look at the generated code to make sure.

  • The main lexer and string lexer both use re2c:yyfill:enable = 1;, other lexers use re2c:yyfill:enable = 0;. This is very important: both the main lexer and string lexer advance input position to new (yet unseen) input characters, so they must check for the end of input and call YYFILL. In contrast, other lexers only parse lexemes that have already been recognized by the main lexer: these lexemes are guaranteed to be within buffer bounds (they are guarded by in.tok on the left and in.lim on the right).

  • The most difficult part is parsing floating-point literals.