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Motivation for this talk

➔ Recent development of parsing theory: TDFA, deterministic finite-state machines capable 
of regular expression parsing, not only recognition.

➔ RE2C: a tool for generating fast lexical analyzers.
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Formal grammars

Formal grammars are a way to give a finite definition for a possibly infinite set of strings (a 
language). Each string in a language is derived from the start symbol by applying a sequence 
of production rules.

A formal grammar is a tuple <Σ, N, P, S> where:

Σ  is the alphabet of terminal symbols
N  is the alphabet of non-terminal symbols
P  is the set of production rules 
S  is the start symbol

Example: additive expressions
Exp ⟶ Exp + Exp | Exp - Exp | Num
Num ⟶ Dgt | Dgt Num
Dgt ⟶ 0|1|2|3|4|5|6|7|8|9

Derivation for “1+2”:
Exp ⟶ Exp + Exp ⟶ Num + Exp
       ⟶ Dgt + Exp ⟶ 1 + Exp
       ⟶ 1 + Num ⟶ 1 + Dgt ⟶ 1 + 2



Chomsky hierarchy

Noam Chomsky, 1959: a hierarchy of formal grammars:

Type Languages Production rules Automaton

Type 0 Recursively enumerable α ⟶ γ Turing machine

Type 1 Context-sensitive α A β ⟶ α γ β Linear bounded Turing machine

Type 2 Context-free A ⟶ γ Pushdown automaton

Type 3 Regular A ⟶ ε|a|aB Finite-state automaton

Chomsky, N. (1959) On certain formal properties of grammars. https://doi.org/10.1016/S0019-9958(59)90362-6

https://doi.org/10.1016/S0019-9958(59)90362-6


Regular expressions

Regular expressions is another way of describing regular languages, equivalent to Type 3 
grammars. They were invented by Stephen Cole Kleene in 1951. A rigorous definition via 
Kleene algebra was given by Dexter Kozen, 1981.

A widely used recursive definition:
1. ε (empty word) and a in Σ (alphabet symbol) are regular expressions.
2. If  e₁,  e₂ are regular expressions, then  e₁ e₂ (concatenation),  e₁| e₂ (alternative) and e₁* 

(repetition) are regular expressions.

RE can express concatenation, alternative, repetition, but not nested constructs.

Kleene. (1951) Representation of Events in Nerve Nets and Finite Automata 
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf

Kozen. (1981) A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events 
https://www.cs.cornell.edu/~kozen/Papers/ka.pdf

https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://www.cs.cornell.edu/~kozen/Papers/ka.pdf


Extensions

Cox. (2007) Regular Expression Matching Can Be Simple And Fast https://swtch.com/~rsc/regexp/regexp1.html

Extension Syntax Languages
Character classes/sets [a-zA-Z], [[:lower:]] ... Regular
Escape sequences \t, \n ... Regular
Generalized repetition e?, e+, e{n,}, e{n,m} Regular

Non-greedy repetition e??, e*?, e+? Regular

Unanchored matches Search anywhere in the string Regular
Assertions ^, $, /e, ?!e ... Regular (?)

Negation, intersection ¬e, e₁ & e₂ Regular

Submatch extraction Capturing groups: (e) Regular

Backreferences (e)\n ... Non-regular (CS?)

https://swtch.com/~rsc/regexp/regexp1.html


Recognition & parsing

➔ Recognition: determine if a string belongs to the language defined by the grammar 
(yes/no answer).

➔ Parsing: find a derivation of a string in the grammar (construct a parse graph, more 
widely known as a parse tree).

Grune, Jacobs. (1990) Parsing Techniques - a Practical Guide. https://dickgrune.com/Books/PTAPG_2nd_Edition

https://dickgrune.com/Books/PTAPG_2nd_Edition


Ambiguity is the existence of more than one parse graph for the same string.

Ambiguity is a property of grammar —
a language can have many grammars,
some of them ambiguous and some
unambiguous.

Ambiguity

Exp ⟶ Exp - Exp ⟶ Num - Exp
       ⟶ Dgt - Exp ⟶ 1 - Exp
       ⟶ 1 - Exp + Exp ⟶ 1 - Num + Exp
       ⟶ 1 - Dgt + Exp ⟶ 1 - 2 + Exp
       ⟶ 1 - 2 + Num ⟶ 1 - 2 + Dgt
       ⟶ 1 - 2 + 3

-

1 +

2 3

Example of an ambiguous grammar:
Exp ⟶ Exp + Exp | Exp - Exp | Num
Num ⟶ Dgt | Dgt Num
Dgt ⟶ 0|1|2|3|4|5|6|7|8|9

Multiple parse trees for “1-2+3”.

Exp ⟶ Exp + Exp ⟶ Exp - Exp + Exp
       ⟶ Num - Exp + Exp ⟶ Dgt - Exp + Exp
       ⟶ 1 - Exp + Exp ⟶ 1 - Num + Exp
       ⟶ 1 - Dgt + Exp ⟶ 1 - 2 + Exp
       ⟶ 1 - 2 + Num ⟶ 1 - 2 + Dgt
       ⟶ 1 - 2 + 3

+

- 3

1 2



Finite-state automata

NFA is a tuple (Q, Σ, Δ, q₀, F), where:
Q is a finite set of states
Σ is a finite set of input symbols (alphabet)
Δ ⊆ Q × (Σ ∪ ε) is a transition relation
q₀ is the initial state
F is a set of final states

DFA is a tuple (Q, Σ, δ, q₀, F), where:
Q is a finite set of states
Σ is a finite set of input symbols (alphabet)
δ : Q × Σ ⟶ Q is a transition function
q₀ is the initial state
F is a set of final states
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the regular language defined by RE a*b*|ab



NFA

There are many different NFA constructions:
➔ Thompson
➔ Glushkov (a.k.a. position NFA)
➔ ...

No single best construction. Key properties:
➔ ε-transitions?
➔ Ambiguity-preserving?
➔ How many states?
➔ Maximum in/out-degree of a state?

We will use Thompson construction.
It is ambiguity-preserving and linear in RE size. Different NFA constructions for RE a*b*|ab
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a₁

a

b₁

a₂ b₂
0

a

a

b
b

b

https://cs.nyu.edu/~mohri/pub/glush.pdf


Step 1

Step 2 Step 3

NFA simulation for string “ab”: build ε-closure, step on 
symbol, repeat. Keep a set of active states at each step.

Simulation
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Determinization of Thompsons NFA for RE a*b*|ab.
Simulate NFA on all possible strings, merging identical
state-sets at each step.

Arrows are ε-closure paths.

Determinization
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DFA

There is a unique minimal DFA.
Any other DFA can be converted to it.

DFA execution is very simple: starting from the 
initial state, follow a unique transition labeled by 
the next input symbol.

Time complexity is ϴ(n), where n is the length of 
the input string. The algorithm works in constant 
memory independent of n.

Determinization may take exponential time (due 
to the worst-case exponential DFA size). Non-minimal and minimal DFA for RE a*b*|ab
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Recap

The following formalisms are equivalent and describe regular languages:

➔ Type 3 grammars
➔ Regular expressions
➔ NFA
➔ DFA

Basic NFA simulation / DFA execution algorithms do recognition, not parsing.

DFA execution is very fast, provided that determinization is done ahead of time.

This theory is well-known and goes back to 1950s.



Lexer generators
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AOT-compilers for RE

Lexer generators:
➔ Extend syntax of programming languages
➔ Allow one to map RE to semantic actions that are executed on match
➔ Compile to code in the target language
➔ Usually implemented as preprocessors, compile ahead of time
➔ Use deterministic automata (determinization is not included in run time)
➔ Suitable for static RE (known in advance), not dynamic RE

Key features of a lexer generator:
➔ DFA encoding (table-based, direct-code)
➔ Handling the end-of-input situation (bounds checking, sentinel symbol, hybrid, user-defined)
➔ Input model (fixed, flexible, user-defined)
➔ Support for RE extensions



RE2C

RE2C (re2c.org and https://github.com/skvadrik/re2c) is a lexer generator with the main goal 
of generating fast code. Second-main goal is flexibility of the user interface.

➔ Peter Bumbulis, 1993 (name means “regular expressions to C”)
➔ C/C++ and Go backends (want Rust!)
➔ Flexible interface (no fixed program template — users write their own interface code)
➔ Different input models, from simple *-terminated strings to very large buffered input
➔ Different end-of-input handling methods
➔ Allows multiple interrelated lexer blocks
➔ Encodings: ASCII, Unicode (UTF8/16/32, UCS2), EBCDIC
➔ Header files / include files
➔ Self-validation for optimizations (generates path cover for unoptimized DFA)

Bumbulis, Cowan. (1993) RE2C --- a More Versatile Lexer Generator. 
https://re2c.org/1994_bumbulis_cowan_re2c_a_more_versatile_scanner_generator.ps

https://re2c.org/
https://github.com/skvadrik/re2c
https://re2c.org/1994_bumbulis_cowan_re2c_a_more_versatile_scanner_generator.ps


#include <assert.h>                 //
                                    // C/C++ code
int lex(const char *YYCURSOR) {     //
    char yych;
    yych = *YYCURSOR;
    switch (yych) {
        case 'a' ... 'z': goto yy4;
        default: goto yy2;
    }
yy2:
    ++YYCURSOR;
    { return 1; }
yy4:
    yych = *++YYCURSOR;
    switch (yych) {
        case '0' ... '9':
        case 'a' ... 'z': goto yy4;
        default: goto yy6;
    }
yy6:
    { return 0; }
}                                   //
                                    //
int main() {                        // C/C++ code
    assert(lex("zer0") == 0);       //
    return 0;                       //
}

#include <assert.h>               //
                                  // C/C++ code
int lex(const char *YYCURSOR) {   //
    /*!re2c                       // start of block
    re2c:define:YYCTYPE = char;   // config
    re2c:yyfill:enable = 0;       // config
    re2c:flags:case-ranges = 1;   // config
                                  //
    ident = [a-z][a-z0-9]*;       // named def
                                  //
    ident { return 0; }           // normal rule
    *     { return 1; }           // default rule
    */
}                                 //
                                  //
int main() {                      // C/C++ code
    assert(lex("zer0") == 0);     //
    return 0;                     //
}

RE2C (example for C)



An old “unfixable” bug

A bug in the trailing context (a.k.a. “lookahead operator”) that won’t get fixed: if regular 
expressions R and S match overlapping languages, the generated lexer may produce incorrect 
results:

R / S

Flex calls this ‘dangerous trailing context’ and generates warnings. For example:

zx*/xy*

Flex manual → Limitations. https://westes.github.io/flex/manual/Limitations.html#Limitations

https://westes.github.io/flex/manual/Limitations.html#Limitations


Generalized problem

Consider a simple RE a*b*|ab with submatch marker between a* and b*  (in RE2C syntax):

[a]* @t [b]* | [a][b]

A C/C++ programmer can write something like this:

while (*s++ == ’a’);
t = s;
while (*s++ == ’b’);

Can RE2C generate code as efficient and simple as the above?



Submatch extraction & lookahead TDFA
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Submatch extraction

What do we expect of submatch extraction on DFA?

➔ Worst case is as hard as parsing
➔ Best case should be as efficient as a bare DFA
➔ Overhead should be proportional to submatch detalization
➔ Lexer generators need to generate efficient code
➔ Have to deal with ambiguity in regular expressions



Ville Laurikari, 2000: TNFA — NFA with 
tagged transitions. Tags are submatch 
markers that can be placed anywhere in 
RE, e.g. a* @t b*|ab.

Simulation needs to track tag values.

TNFA
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How to fold?

Problem:

How to fold DFA? Seems impossible to merge states, because state-sets extended with 
tag information are no longer identical (tag values are different at each step).

Solution (Ville Laurikari, 2000):

Use references to tag locations rather than immediate values! Add operations on DFA 
transitions that will update tag values at locations. When mapping states with different 
locations, add copy operations to reorder tag values at locations.

Separate static and dynamic part in the state-sets. 

Laurikari. (2000) NFAs with Tagged Transitions, their Conversion to Deterministic Automata and Application to Regular Expressions.  
https://laurikari.net/ville/spire2000-tnfa.pdf

https://laurikari.net/ville/spire2000-tnfa.pdf


Determinization of TNFA for RE  a* @t b*|ab. Simulate TNFA on
all possible strings, mapping state-sets with identical TNFA states
at each step. Add operations on incoming transitions.

Arrows are tagged ε-closure paths.

Laurikari determinization
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TDFA is like ordinary DFA extended with a 
fixed number of registers and register 
operations on transitions.

But this is not what we want! We want:

while (*s++ == ’a’);
t = s;
while (*s++ == ’b’);

And the optimized TDFA is equivalent to: 

while (*s++ == ’a’) t = s;
while (*s++ == ’b’);

TDFA
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Eliminating redundancy

Problem:

How to eliminate redundant register operations?

Solution:

Use the lookahead symbol to filter them out!

Delay register operations one step. Store lookahead tags in TDFA states under 
construction and take them into account when mapping TDFA states.

This reminds of the difference between LR(1)/LALR(1) and LR(0),  therefore Laurikari 
construction is called TDFA(0), and the lookahead construction is called TDFA(1).

Trofimovich. (2017) Tagged Deterministic Finite Automata with Lookahead. https://arxiv.org/pdf/1907.08837.pdf

https://arxiv.org/pdf/1907.08837.pdf


Lookahead-aware determinization for RE  a* @t b*|ab.
State-sets are extended with lookahead tags from the incoming
transitions, operations are delayed to outgoing transitions.

Lookahead determinization
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Lookahead TDFA has fewer register 
operations, and it has the effect of lifting 
operations out of loops.

Optimized lookahead TDFA for regular 
expression a* @t b*|ab is equivalent to: 

while (*s++ == ’a’);
t = s;
while (*s++ == ’b’);

Lookahead TDFA

Lookahead TDFA for RE a* @t b*|ab

Optimized lookahead TDFA for RE a* @t b*|ab
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Real-world code

    YYCTYPE yych;
    goto yy0;
yy1:
    ++YYCURSOR;
yy0:
    yych = *YYCURSOR;
    switch (yych) {
        case 'a': goto yy1;
        case 'b': yyt1 = YYCURSOR; goto yy4;
        default:  yyt1 = YYCURSOR; goto yy3;
    }
yy3:
    t = yyt1; {/* use t ... */}
yy4:
    yych = *++YYCURSOR;
    switch (yych) {
        case 'b': goto yy4;
        default:  goto yy3;
    }

This is the real code that RE2C generates for 
regular expression a* @t b*|ab (for the 
C/C++ backend, modulo whitespace).

There is one tag variable yyt1 and exactly 
one tag variable assignment on any code 
path.

$ re2c -i -tags -
/*!re2c

re2c:yyfill:enable = 0;
 [a]* @t [b]* | [a][b] {/* use t ... */}
*/



Optimizations

In lexer generators registers are mapped to variables  ⇒  TDFA induces a CFG ⇒  the usual 
compiler optimizations are applicable.

➔ Liveness analysis on registers (iterative data-flow, or on SSA)
➔ Dead code elimination
➔ Variable allocation (analogue of the usual register allocation)
➔ Copy coalescing (particularly helpful, removes copy operations)
➔ Lifting common operations out of branches
➔ …

Minimization.

➔ Canonical algorithms (e.g. Moore’s), adapted to distinguish transitions with operations
➔ Must go after CFG optimizations to reduce transition interference



Disambiguation

Not to be confused:
➔ Non-determinism: multiple versions of a tag in the same TDFA state.
➔ Ambiguity: multiple versions of a tag in the same TNFA state reached by different paths.

Registers take care of non-determinism, disambiguation policy takes care of ambiguity.
➔ POSIX (longest-match): difficult to implement (libraries like RE2 gave up). 
➔ Perl (leftmost-greedy): very easy to implement (just use leftmost DFS in ε-closure).

Disambiguation is applied during determinization. No matter which policy, the resulting TDFA 
has no overhead (disambiguation decisions are embedded in its structure).

RE2C supports both Perl (@-tags syntax) and POSIX policies (capturing parentheses).

Borsotti, Trofimovich. (2019) Efficient POSIX Submatch Extraction on NFA. 
https://re2c.org/2019_borsotti_trofimovich_efficient_posix_submatch_extraction_on_nfa.pdf

https://re2c.org/2019_borsotti_trofimovich_efficient_posix_submatch_extraction_on_nfa.pdf


Full parsing

Full parsing can be done on TDFA by adding tags (or captures) around each symbol, but it is 
not elegant and DSSTs are better suited to this (Deterministic Streaming String Transducers).

In practice a more useful feature is the ability to extract submatch on all repetitions, not just 
the last one (as specified by POSIX regcomp/regexec interface).

Don’t use vectors to represent tag values, they make copy operations very expensive. Instead 
encode tag values in a trie — a tree stored as an array of pairs (tag value, parent index). This 
way tag variables remain scalar, operations are cheap, and common prefixes of tag histories 
are deduplicated.

RE2C supports s-tags (single-value tags) and m-tags (multiple-value tags).

Grathwohl. (2015) Parsing with Regular Expressions & Extensions to Kleene Algebra. 
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.699.9957&rep=rep1&type=pdf

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.699.9957&rep=rep1&type=pdf


Recap

➔ The problem of submatch extraction on DFA has been solved (Laurikari, 2000).

➔ TDFA is an ordinary DFA extended with registers and register operations.

➔ Lookahead TDFA is a practical improvement that allows to greatly reduce the number of 
registers and register operations.

➔ TDFA is parameterized over disambiguation policy (e.g. POSIX, Perl) and has no runtime 
overhead on disambiguation.

➔ TDFA supports full parsing or repeated submatch extraction.

➔ TDFA can be minimized.

➔ TDFA in lexer generators benefits from compiler optimizations.
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Benchmarks

A few different groups of benchmarks:

➔ AOT-compiled RE (different lexer generators / automata types)
https://re2c.org/benchmarks/benchmarks.html#submatch-lexer-generators

➔ JIT-compiled RE (registerless-TDFA vs. TDFA)
https://re2c.org/benchmarks/benchmarks.html#submatch-libraries-dfa

➔ TDFA(0) vs. TDFA(1)
https://re2c.org/2017_trofimovich_tagged_deterministic_finite_automata_with_lookahead.pdf

Benchmarks show that for submatch extraction:

➔ TDFA(1) are faster and smaller than TDFA(0)
➔ TDFA are faster and smaller than other parsing deterministic automata (sta-DFA or DSST)
➔ Submatch overhead is small (performance is close to bare DFA)

https://re2c.org/benchmarks/benchmarks.html#submatch-lexer-generators
https://re2c.org/benchmarks/benchmarks.html#submatch-libraries-dfa
https://re2c.org/2017_trofimovich_tagged_deterministic_finite_automata_with_lookahead.pdf


The END.
Thank you!


